Jump to content

6000 (number)

From Wikipedia, the free encyclopedia
(Redirected from 6236 (number))
← 5999 6000 6001 →
Cardinalsix thousand
Ordinal6000th
(six thousandth)
Factorization24 × 3 × 53
Greek numeral,Ϛ´
Roman numeralVM, or VI
Unicode symbol(s)VM, vm, VI, vi
Binary10111011100002
Ternary220200203
Senary434406
Octal135608
Duodecimal358012
Hexadecimal177016
ArmenianՑ

6000 (six thousand) is the natural number following 5999 and preceding 6001.

Selected numbers in the range 6001–6999

[edit]

6001 to 6099

[edit]

6100 to 6199

[edit]

6200 to 6299

[edit]

6300 to 6399

[edit]
  • 6311super-prime
  • 6317 – balanced prime
  • 6322 – centered heptagonal number[1]
  • 6323 – Sophie Germain prime, balanced prime, super-prime
  • 6328 – triangular number
  • 6329 – Sophie Germain prime
  • 6337 - star prime
  • 6338 - sum of the first 55 primes
  • 6346 – Number of verses in the Qur'an according to the sect founded by Rashad Khalifa.[10]
  • 6348pentagonal pyramidal number[11]
  • 6361 – prime of the form 2p-1, twin prime
  • 6364 – nonagonal number[2]
  • 6367 – balanced prime
  • 6368 – amicable number with 6232
  • 6373 – balanced prime, sum of three and seven consecutive primes (2113 + 2129 + 2131 and 883 + 887 + 907 + 911 + 919 + 929 + 937)
  • 6397 – sum of three consecutive primes (2129 + 2131 + 2137)
  • 6399 – smallest integer that cannot be expressed as a sum of fewer than 279 eighth powers

6400 to 6499

[edit]
  • 6400 = 802
  • 6408 – sum of the squares of the first thirteen primes
  • 6441 – triangular number
  • 6449 – Sophie Germain prime
  • 6466Markov number[12]
  • 6480 – smallest number with exactly 50 factors
  • 6491 – Sophie Germain prime

6500 to 6599

[edit]
  • 6502 – model number of the MOS Technology 6502 which equipped early computers such as the Apple I and II, Commodore PET, Atari and others.
  • 6509 – highly cototient number[13]
  • 6521Sophie Germain prime
  • 6542 – number of primes .[14]
  • 6545tetrahedral number[15]
  • 6551 – Sophie Germain prime
  • 6555 – triangular number
  • 6556 – member of a Ruth-Aaron pair with 6557 (first definition)
  • 6557 – member of a Ruth-Aaron pair with 6556 (first definition)
  • 6561 = 812 = 94 = 38, perfect totient number[16]
  • 6563 – Sophie Germain prime
  • 6581 – Sophie Germain prime
  • 6599 – safe prime

6600 to 6699

[edit]

6700 to 6799

[edit]
  • 6719 – safe prime, highly cototient number[13]
  • 6724 = 822
  • 6733 - star prime
  • 6728 – number of domino tilings of a 6×6 checkerboard
  • 6761 – Sophie Germain prime
  • 6765 – 20th Fibonacci number[22]
  • 6779 – safe prime
  • 6786 – triangular number

6800 to 6899

[edit]
  • 6811 – member of a Ruth-Aaron pair with 6812 (first definition)
  • 6812 – member of a Ruth-Aaron pair with 6811 (first definition)
  • 6827 – safe prime
  • 6841 - largest right-truncatable prime in base 7
  • 6842 – number of parallelogram polyominoes with 12 cells[23]
  • 6859 = 193
  • 6863 – balanced prime
  • 6870 - sum of the first 57 primes
  • 6879 – number of planar partitions of 15[24]
  • 6880vampire number[25]
  • 6889 = 832, centered octagonal number[7]
  • 6899 – Sophie Germain prime, safe prime

6900 to 6999

[edit]

Prime numbers

[edit]

There are 117 prime numbers between 6000 and 7000:[26][27]

6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997

See also

[edit]

References

[edit]
  1. ^ a b c d Sloane, N. J. A. (ed.). "Sequence A069099 (Centered heptagonal numbers.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. ^ a b c Sloane, N. J. A. (ed.). "Sequence A001106 (9-gonal (or enneagonal or nonagonal) numbers: a(n) = n*(7*n-5)/2.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  3. ^ Sloane, N. J. A. (ed.). "Sequence A100827 (Highly cototient numbers: records for a(n) in A063741.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  4. ^ Sloane, N. J. A. (ed.). "Sequence A005900 (Octahedral numbers: a(n) = n*(2*n^2 + 1)/3.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  5. ^ Sloane, N. J. A. (ed.). "Sequence A001599 (Harmonic or Ore numbers: numbers k such that the harmonic mean of the divisors of k is an integer.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  6. ^ a b Sloane, N. J. A. (ed.). "Sequence A000330 (Square pyramidal numbers: a(n) = 0^2 + 1^2 + 2^2 + ... + n^2 = n*(n+1)*(2*n+1)/6.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  7. ^ a b Sloane, N. J. A. (ed.). "Sequence A016754 (Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  8. ^ Sloane, N. J. A. (ed.). "Sequence A076980 (Leyland numbers: 3, together with numbers expressible as n^k + k^n nontrivially, i.e., n,k > 1 (to avoid n = (n-1)^1 + 1^(n-1)).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  9. ^ a b c Sloane, N. J. A. (ed.). "Sequence A001107 (10-gonal (or decagonal) numbers: a(n) = n*(4*n-3).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  10. ^ Gardner, Martin (September–October 1997), "The numerology of Dr. Rashad Khalifa", Skeptical Inquirer, archived from the original on 2004-09-27
  11. ^ Sloane, N. J. A. (ed.). "Sequence A002411 (Pentagonal pyramidal numbers: a(n) = n^2*(n+1)/2.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  12. ^ Sloane, N. J. A. (ed.). "Sequence A002559 (Markoff (or Markov) numbers: union of positive integers x, y, z satisfying x^2 + y^2 + z^2 = 3*x*y*z.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  13. ^ a b c Sloane, N. J. A. (ed.). "Sequence A100827 (Highly cototient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  14. ^ Sloane, N. J. A. (ed.). "Sequence A007053 (Number of primes <= 2^n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  15. ^ Sloane, N. J. A. (ed.). "Sequence A000292 (Tetrahedral (or triangular pyramidal) numbers: a(n) = C(n+2,3) = n*(n+1)*(n+2)/6.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  16. ^ Sloane, N. J. A. (ed.). "Sequence A082897 (Perfect totient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  17. ^ Sloane, N. J. A. (ed.). "Sequence A002997 (Carmichael numbers: composite numbers k such that a^(k-1) == 1 (mod k) for every a coprime to k.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  18. ^ Sloane, N. J. A. (ed.). "Sequence A001628 (Convolved Fibonacci numbers.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  19. ^ Sloane, N. J. A. (ed.). "Sequence A000217 (Triangular numbers: a(n) = binomial(n+1,2) = n*(n+1)/2 = 0 + 1 + 2 + ... + n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  20. ^ Sloane, N. J. A. (ed.). "Sequence A060544 (Centered 9-gonal (also known as nonagonal or enneagonal) numbers. Every third triangular number, starting with a(1)=1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  21. ^ Sloane, N. J. A. (ed.). "Sequence A069132 (Centered 19-gonal numbers.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  22. ^ Sloane, N. J. A. (ed.). "Sequence A000045 (Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  23. ^ Sloane, N. J. A. (ed.). "Sequence A006958 (Number of parallelogram polyominoes with n cells (also called staircase polyominoes, although that term is overused))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  24. ^ Sloane, N. J. A. (ed.). "Sequence A000219 (Number of planar partitions (or plane partitions) of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  25. ^ Sloane, N. J. A. (ed.). "Sequence A014575 (Vampire numbers (definition 2): numbers n with an even number of digits which have a factorization n = i*j where i and j have the same number of digits and the multiset of the digits of n coincides with the multiset of the digits of i and j.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  26. ^ Sloane, N. J. A. (ed.). "Sequence A038823 (Number of primes between n*1000 and (n+1)*1000)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  27. ^ Stein, William A. (10 February 2017). "The Riemann Hypothesis and The Birch and Swinnerton-Dyer Conjecture". wstein.org. Retrieved 6 February 2021.